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Abstract—The emergence effect is considered in terms of mappings realized by abstract systems
that describe observable physical manifestations. The emergence phenomenon is interpreted in
terms of the expansion of the class of realized mappings when elements are combined into
a system or new connections between elements arise. The paper considers the problem of
describing emergent properties in models of systems that realize binary mappings. The structure
of interaction of elements in such systems is described by a finite oriented graph. Classes
of mappings are studied for set-theoretical operations on such systems. A “superadditive”
expansion of the class of mappings is shown when systems are combined. The emergence
coefficient is introduced and substantiated. Lower and upper bounds for this coefficient are
proved.
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1. INTRODUCTION

In systems analysis, the concept of emergence is one of the most interesting properties of complex
systems. In the standard formulation, emergence is the appearance of new properties and qualities
that are not inherent in the elements that make up the system. The term “system effect” is also
used as a synonym for emergence. The history of the origin and development of the concept of
emergence within the framework of general systems theory, as well as the basic ideas underlying this
phenomenon, are presented in [1]. In particular, with reference to [2], it is indicated that emergent
behavior can be understood based on the nature and behavior of its parts plus knowledge of how
these parts interact.

A large number of works are devoted to the philosophical and general methodological under-
standing of this phenomenon as a whole [3]. In [4], the categories of strong and weak emergence
are substantiated; these concepts are quite conditional, and it is difficult to draw a clear boundary
between them. Moreover, it is believed that emergence can manifest itself on a continuum from
“weak” to “strong” [5]. Emergence is considered strong if there is no acceptable theory that could
explain or derive the behavior of the system based on the properties or behavior of its components.
On the contrary, emergence is weak if the dependence between the behavior of the components
and the behavior of the system is clearly observed. In [6], an attempt is made to mathematically
prove the possibility of defining the concept of strong emergence. The paper [7] is devoted to
the formalization of the concept of emergence based on entropy. It is argued that there is a
connection between entropy and emergence in complex systems in the sense that an increase in
entropy is an indicator of the possible occurrence of emergent events and states. In conclusion, the
authors formulate the question of how to express the entropy of a system through the entropy of
its constituent subsystems.
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684 KARKISHCHENKO

Attempts to give a formal description of such effects in specific physical or engineering systems
cause significant difficulties, so there are far fewer examples of such studies. Here it is worth noting
the work [8], which examines the occurrence of emergent effects in artificial systems, as well as
the work [9], devoted to the study of principles and approaches to the construction of engineering
systems with such properties. Specific examples of the manifestation of the system effect in real
physical systems can be found, for example, in [10–13].

Due to the lack of a clear understanding, emergence is defined differently in different studies.
For example, in [14, 15] it is understood as the ability of interacting autonomous agents to form
coordinated behavior without external control, but only on the basis of internal interaction. A sim-
ilar view is reflected in [16], which examines the processes of selforganization and emergence in the
formation of a common vocabulary at the primary stages of the formation of human communities.
The main idea is also based on modeling the interaction of agents acting on the basis of a small
number of simple rules, which leads to emergent effects.

The study of emergence is closely related to the study of processes that lead to complex behavior
of a system with relatively simple behavior of its elements. Perhaps the formal justification of such
processes even in relatively narrow specific cases of such systems is the key issue in understanding
the nature of emergence as such. These issues are central to the publication [17].

The system effect is found in systems of various natures – polymetallic compounds, chemical
processes, collective decision-making in social structures, etc. The diversity of its manifestations
predetermines the formal methods that are most suitable for research in each case. These may be
equations describing the elastic interaction of solids, laws of chemical reactions, or algorithms for
making compromise decisions, in particular, algorithms for group control in multiagent systems.
The study of system effects involves the preliminary construction of a formal model that should
correctly predict the behavior of the object or process under permissible impacts on it.

It is generally accepted that for the existence of any system, system-forming factors are necessary,
which contribute to the formation of the system, are external in relation to its elements, and are
not caused by the need for unification [18]. In many cases, the role of such factors is played by
connections between elements, the nature of which is determined by the nature of the elements
that form the system.

The basic assumption that motivated this work is that a fairly universal way to study emer-gence
is to study the mappings realized by a complex system depending on the mappings realized by the
elements of the system and on the state of the system-forming factors, i.e., the structure of the
connections between the elements of the system. This is almost obvious in the case of information
processing systems, including those that include people.

Below we consider a class of systems implementing binary mappings. In a certain sense, they can
be considered as automaton mappings. Despite their apparent simplicity, automaton mappings are
in many cases not inferior to classical algebraic structures in terms of their breadth of application
and expressiveness. It is also known that semigroups, groups and rings of automata, as well as their
functional systems, have contributed to the solution of a number of difficult abstract mathematical
problems.

Models of binary mapping systems do not provide a complete explanation of all processes of
system emergence. However, they demonstrate important properties that are inherent in this phe-
nomenon. For example, the so-called “superadditive” effect that occurs when combining systems,
as well as the emergence of limit cycles in a set of states. In physical systems, limit cycles corre-
spond to attractors that can be considered as possible macrostates in multiscale systems. In the
case of binary mapping systems, it becomes possible to move to strictly formal models and obtain
a number of quantitative characteristics of processes that reflect emergence. It should be noted
that superadditive effects on classes of binary mappings, according to the almost generally accepted
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terminology and classification, can be attributed to the class of weak emergence [4–6], since there
is a high level of traceability between the functions of the elements and the functions of the system
as a whole.

The paper is structured as follows. Section 2 provides the basic definitions, notations, and terms
that are used further in the text. Sections 3 and 4 contain the derivation of the basic relations
describing the realized binary mappings in systems with the structure of a complete graph and an
arbitrary directed graph, respectively. Section 5 proves statements describing the classes of binary
mappings that are obtained as a result of set-theoretic operations on systems. The resulting system
effect is also described. Section 6 is devoted to the definition and justification of the emergence
coefficient for binary systems, as well as the proof of two-sided estimates for it.

2. BASIC DEFINITIONS AND NOTATIONS

We will use the Kronecker product A⊗B of matrices A and B, namely, if A = (aij) is a ma-
trix of dimensions m× n, and B is a matrix of dimensions p× q, then by definition the ma-
trix A⊗B = (aijB) and obviously has dimensions mp× nq. The definition and properties of the
Kronecker product can be found, for example, in [19]. In particular, we will need the equality
(A⊗B) (C ⊗D) = AC ⊗BD connecting the ordinary and Kronecker products, where matrices A,
B, C and D have sizes for which all products are defined. This property can be generalized to an
arbitrary number of factors. For convenience, we will denote the Kronecker product of matrices

A1, A2, . . . , Ak by A1 ⊗A2 ⊗ . . .⊗Ak =
k
⊗
i=1

Ai. In particular, we will write the Kronecker kth power

of a matrix A as A⊗ . . .⊗A︸ ︷︷ ︸
k

= A[k]. It is important to take into account the non-commutativity

of the Kronecker product.

The Kronecker extension of a vector a = (a1 a2 . . . an)
	 is the vector

ā = (1 a1 a2 (a1a2) . . . (a1a2 . . . an))
	 =

(
1
an

)
⊗
(

1
an−1

)
⊗ . . .⊗

(
1
a1

)
.

The Kronecker extension of a matrix A by rows is the matrix Ā, each row of which, considered
as a vector, is the Kronecker extension of the corresponding row of the matrix A. The Hadamard
product of matrices A and B is the matrix A∗B, obtained as a result of element-wise multiplication
of these matrices [19]. This product is defined for matrices of the same size and is a commutative
operation. The matrix is called monomial by columns if each of its columns consists of zeros except
for one element, which is equal to one.

Below we will need some basic definitions from graph theory. Let H = (V,E) be a directed
graph, where V = {v1, v2, . . . , vn} is the set of vertices and E = {e1, e2, . . . , ep} ⊆ V × V is the set
of arcs. The graph is allowed to contain loops, i.e., arcs of the form e = (v, v). If vi ∈ V , then
ρi will denote the indegree of the vertex vi, i.e., the number of arcs of the form (v, vi) entering this
vertex, so that

∑n
i=1 ρi = |E|. A graph with n vertices that contains all possible arcs and loops,

i.e., when E = V × V , |E| = n2, is called a complete directed graph with loops (or simply a complete
graph for short), and will be denoted by Kn. If E = ∅, then such a graph is called a null graph
and is denoted by On.

The adjacency matrix of a directed graph H is a square matrix R = (rij) of size n× n, in which
rij = 1, if (vi, vj) ∈ E, and rij = 0 otherwise. The union and intersection of graphs H1 = (V,E1)
and H2 = (V,E2) with the same set of vertices are graphs H1 ∪H2 = (V,E1 ∪ E2) and H1 ∩H2 =
(V,E1 ∩ E2), respectively.
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3. SYSTEMS WITH COMPLETE GRAPH STRUCTURE

By a system we mean a set of n interacting functional elements that operate in discrete time
t = 0, 1, 2, . . . and can be in one of two states – 0 or 1. The state zi of the ith element at a given time
t+ 1 is determined by a Boolean function zi(t+ 1) = fi (x1(t+ 1), . . . , xm(t+ 1); z1(t), . . . , zn(t))
that depends on two groups of arguments. The arguments of the first group are external arguments
x1(t+ 1), . . . , xm(t+ 1) that are binary external signals, the arguments of the second group are
internal arguments z1(t), . . . , zn(t) that are the states of the corresponding elements of the system
at a given time t. We will call the functions zi, i = 1, . . . , n, the state functions of the elements,
and the ordered set of states of all elements — the state of the system. We assume that the system
does not depend on random factors.

The sequence of states of the system can be considered as a binary mapping of the sequence of
external arguments and previous states. In general, the functions implemented by elements may not
depend on the states of some other elements, which is determined by the structure of connections
between elements. Therefore, the sequence of states depends on: 1) the functions implemented by
each element of the system, and 2) the structure of connections between elements. If the system
contains n elements with m inputs, then each element can be described by one of the 2m+n Boolean
functions.

The structure of the system is conveniently defined using a directed graph, the vertices of which
are in one-to-one correspondence with the elements of the system, and the arcs correspond to the
connections between the outputs of some elements and the inputs of others. Since the state of
each element can also depend on its own state, the system graph can have loops. The described
system can be considered as a synchronous sequential logical network implementing an automaton
mapping [20].

Let us consider a system of n elements with structure Kn. The mapping realized by it can be
described by a system of state functions, in which the right-hand sides are some Boolean functions:

zi(t+ 1) = fi (x1(t+ 1), . . . , xm(t+ 1), z1(t), . . . , zn(t)), i = 1, . . . , n.

Next, we will consider the case when there are no external arguments, i.e., zi(t+ 1) =
fi (z1(t), . . . , zn(t)), i = 1, . . . , n. By analogy with differential equations, such a system can be
called autonomous, describing its “own free movement” or, in the terminology of systems analysis,
a closed system demonstrating its behavior depending on the initial state z1(0), . . . , zn(0). We will
describe the mappings realized by such a system for all possible state functions of the system’s
elements.

As is known [21–23], any Boolean function of n variables can be uniquely defined by its arithmetic
representation:

zi(t+ 1) = fi(z1(t), . . . , zn(t)) = ai0 + ai1z1(t) + ai2z2(t) + ai12z1(t)z2(t) + . . .

+ aik1...kpzk1(t) · . . . · zkp(t) + . . .+ ai1...nz1(t) · . . . · zn(t), i = 1, . . . , n, (1)

where ai0, a
i
1, a

i
2, a

i
12, . . . , a

i
k1...kp

, . . . , ai1...n are integers that uniquely define the function fi.

Let us consider the Kronecker extension of the vector z = (z1 z2 . . . zn)
	:

z̄ = (1 z1 z2 (z1z2) . . . (z1z2 . . . zn))
	 =

(
1
zn

)
⊗
(

1
zn−1

)
⊗ . . . ⊗

(
1
z1

)
.

Then the system of relations (1) can be written in matrix form:

z(t+ 1) = Az̄(t), (2)

here A is the matrix of the size n× 2n of the corresponding coefficients.
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Equality (2) can be written differently. The vector z̄(t) takes 2n different values, and each
of them is assigned an image under the mapping A. Therefore, we can write 2n equalities (2)
corresponding to different z̄(t). It is easy to prove by induction that all possible 2n values of the

vector z̄(t), written in the natural order, form a matrix Qn =

(
1 1
0 1

)[n]

. Let us denote by B the

matrix whose columns are the images of the corresponding vectors z̄(t). Obviously, this matrix
completely and uniquely describes the binary mapping realized by the system. Then all possible 2n

equalities (2) can be written compactly as B = AQn. Since Q−1
n =

(
1 −1
0 1

)[n]

, we immediately

obtain

A = BQ−1
n . (3)

This formula gives an explicit expression for the coefficients of the arithmetic representation of
the state functions of all elements of the system that realizes the binary mapping specified by the
matrix B. The uniqueness of solution (3) means that any mapping can be realized in a system
with structure Kn. In other words, the class of mappings realized in such a system coincides with
the set of all possible mappings. If the structure of the system differs from Kn, then this will no
longer be true.

Next, we describe the classes of realizable binary mappings depending on the structure of the
system, defined by an arbitrary directed graph (not necessarily a graph Kn).

4. SYSTEMS WITH ARBITRARY STRUCTURE
AND CLASSES OF MAPPINGS

Let us consider the general case when the system has an arbitrary structure defined by a directed
graph H = (V,E). The state function of the ith element depends on the state of the jth element if
two conditions are simultaneously met: 1) there is a connection between the input of the ith element
and output of the jth element and 2) the value of the state of the jth element is an essential
variable for the ith element. The first condition is determined by the structure of the system,
and the second by the state function. This reflects the relationship between the intra-element and
supra-element organization of the system. A system with a structure Kn is maximally “informed,”
since each element has information about the states of all other elements (including itself) and can
be configured to perform any function.

Let us characterize the class of mappings realized by a system with an arbitrary structure H.
Let R = (rij) be the adjacency matrix of the graph H. Using the arithmetic representation (1), we
obtain a matrix relation z(t+ 1) = Az̄(t) similar to (2), where, as before, A is a matrix, each row
of which is formed by the coefficients of the corresponding arithmetic representations.

However, in the general case zi(t+ 1) does not depend on all values of zj(t), j = 1, . . . , n, but only
on some of them, determined by the structure of the system. More precisely, zi(t+ 1) essentially
depends on zj(t) if rji = 1, and, accordingly, does not depend if rji = 0. Thus, all information about
the structural dependence of the ith element on the other elements is contained in the ith column
of the matrix R. If zi(t+ 1) does not structurally depend on zj(t), then we can assume that the
coefficient aij in the expansion is equal to zero or, in the general case, we can write aij = rjiu

i
j .

It is clear that in the remaining terms of the expansion, for example, aik1...k2zk1(t) · . . . · zk2(t),
the coefficient aik1...k2 is also equal to zero if at least one of the connections of the k1th, . . . ,
kpth elements with the input of the ith element is absent. This is equivalent to the equality:
aik1...kp = rk1i · . . . · rkpiuik1...kp . Consequently, the matrix A can be written as a Hadamard product
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688 KARKISHCHENKO

of two matrices:

A =

⎛⎜⎜⎜⎝
a10 a11 a12 a112 . . . a11...n

a20 a21 a22 a212 . . . a21...n
. . . . . . . . . . . . . . . . . .
an0 an1 an2 an12 . . . an1...n

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
u10 u11 u12 u112 . . . u11...n

u20 u21 u22 u212 . . . u21...n
. . . . . . . . . . . . . . . . . .
un0 un1 un2 un12 . . . un1...n

⎞⎟⎟⎟⎠ ∗

⎛⎜⎜⎜⎝
1 r11 r21 (r11 · r21) . . . (r11 · . . . · rn1)
1 r12 r22 (r12 · r22) . . . (r12 · . . . · rn2)
. . . . . . . . . . . . . . . . . .
1 r1n r2n (r1n · r2n) . . . (r1n · . . . · rnn)

⎞⎟⎟⎟⎠ .

The first matrix in the product, denoted by U , is actually the matrix of the coefficients of the
representation. The second matrix reflects the structural dependence of the elements of the system.
It is obviously the Kronecker expansion over the rows R	 of the transposed adjacency matrix R.
The matrix R	, obviously consists of zeros and ones, as does the matrix R. In view of this, the
matrix relation can be written as follows:

z(t+ 1) =
(
U ∗R	

)
z̄(t). (4)

This expression defines the mappings realized by a system with an arbitrary structure H, deter-
mined by the adjacency matrix R. In particular, if H = Kn, all elements of the matrix R, and
therefore of the matrix R	, are equal to one, and formula (4) coincides with formula (2).

Just as expression (3) was obtained from (2), for the coefficients of the arithmetic representation
that determines the matrix A, from relation (4) we can express U ∗R	:

U ∗R	 = BQ−1
n . (5)

However, unlike the previous case, in this relation the matrix B cannot be arbitrary; it must be
a binary matrix, but such that the elements on the right-hand side of (5) are guaranteed to be
equal to zero, the locations of which are determined by the position of the zero elements of the
matrix R	.

Each state of the system can be identified with a binary vector. If we write all possible states
of the system in the natural order, they form a binary matrix G of size n× 2n. For n = 2, 3 these
matrices are shown below:

G =

(
0 1 0 1
0 0 1 1

)
, G =

⎛⎜⎝0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

⎞⎟⎠ .

Each column of the matrix B is one of the possible states of the system, so we can write B = GP ,
where P is a column-monomial matrix of size 2n × 2n. In other words, GP is the same matrix B,
as in the expression for the coefficients of the arithmetic representation (3), but written explicitly
using the monomial matrix P , i.e., the set of matrices B and all monomial matrices P are in one-
to-one correspondence. This allows us to further operate not with all possible images of binary
vectors in the mapping, but with all column-monomial matrices, which is much more convenient
from a formal point of view. Substituting this equality into formula (5) for the matrix of coefficients
of the arithmetic representation in the case of an arbitrary structure, we obtain

U ∗R	 = GPQ−1
n . (6)

Further, we will call this equality the relation for the coefficients. If the matrix P satisfies this
condition for some matrix U , then it completely describes the binary mapping realized by the
system with the given structure H. Thus, there is a one-to-one correspondence between mappings
and monomial matrices satisfying the relation for the coefficients (6) for some matrix U . Therefore,
each mapping can be identified with the corresponding monomial matrix P .
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Let us denote by P the set of all monomial matrices of size 2n×2n. Obviously, P is a semigroup
with unity, which contains, in particular, a subsemigroup isomorphic to the symmetric group S2n .
The set P(H) ⊆ P of transformations P , satisfying the relation for the coefficients (6) for some
matrix U , determines the class of mappings realized by a system with the graph structure H. This
can be explained as follows.

The mapping of all possible states of the system is completely determined by the set of specific
mappings realized by each element of this system, i.e., by the Boolean functions describing their
functioning. In turn, these functions are completely determined by the corresponding coefficients of
their arithmetic representations. But these coefficients are uniquely determined by the matrix B,
and, due to what has been said above, by the corresponding monomial matrix P . In the case of a
complete graph structure, for any possible mapping of the system states, it is possible to calculate
the coefficients of the arithmetic representations of the functions of the elements, under which the
system will realize this mapping.

For a system with an arbitrary structure this is not so, since the functions realized by the
elements of the system, and therefore the system as a whole, are limited by the existing structure
of the system, i.e., the connections between the elements. Therefore, not every mapping can be
realized in such a system. Since the mapping of the states of the system is completely determined by
the monomial matrix P , this means that the functions of the elements, and therefore the coefficients
of their arithmetic representations, cannot be found for every matrix so that the relation for the
coefficients (or equality) (6) is satisfied. All possible mappings that can be realized in a system
with a fixed structure due to all possible choices of the functions of the elements form a class of
mappings for a given structure.

Let us characterize the matrices P included in the set P(H). For this, we will need an aux-
iliary “index” set. For convenience, let the matrices R	 and U be specified using the usual two-
index numbering, i.e., R	 = (r̄ij), U = (uij), i = 1, . . . , n, j = 1, . . . , 2n. Let us introduce the set

IndR	 = {(i, j)| i = 1, . . . , n, j = 1, . . . , 2n, r̄ij = 0}. In other words, IndR	 is formed by all pos-

sible pairs of indices that determine the positions of the zero elements of the matrix R	. The
following statement gives a description of the set P(H), that does not depend on U .

Statement 1. P(H) =
{
P | P ∈ P, giPq

(−1)
j = 0, (i, j) ∈ IndR	

}
.

Proof. Let gi and q
(−1)
j denote the ith row in G and the jth column in Q−1

n . Then the
(i, j)-element of the matrix in the relation for the coefficients (6) on the right is obviously equal

to giPq
(−1)
j . If the corresponding element of the matrix R	 is equal to zero, i.e., r̄ij = 0, then

the (i, j)-element of the matrix U ∗ R	 is also equal to zero. Therefore, in order for the matrix

equality for the coefficients (6) to hold, it must be giPq
(−1)
j = 0. Otherwise, i.e., for r̄ij = 1, the

(i, j)-element of the matrix U ∗R	 is equal to the (i, j)-element of the matrix U . Since this element

is one of the coefficients, then, setting it equal to giPq
(−1)
j , we obtain the required equality of the

elements on the left and right. Therefore, a monomial matrix P ∈ P satisfies the relation for the

coefficients (6) if it satisfies the system of relations giPq
(−1)
j = 0, (i, j) ∈ IndR	, which proves the

statement.

Each structureH generates a class P(H) of binary mappings formed under all possible functional
settings of the system elements. In particular, if H = Kn, then R is a matrix of ones. In this case,
obviously, P(Kn) = P, and hence any mapping can be realized in such a system. If the structure
of the system is a null graph, i.e., H = On, then R = 0, and P(On) contains 2n matrices P ,
characterized by the fact that the elements of one of the rows are equal to one, and the rest are
equal to zero.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 7 2025



690 KARKISHCHENKO

The following statement gives an explicit expression for the cardinality |P(H)| of the class of
mappings P(H), realized by a system with structure H.

Statement 2. Let the structure of the system be defined by a directed graph H = (V,E), |V | = n,
ρi is the indegree of a vertex i in the graph H, i = 1, . . . , n. Then

|P(H)| = 2

n∑
i=1

2ρi
. (7)

Proof. The number of different binary mappings realized by the ith element with ρi inputs for

all possible functional settings is 22
ρi . Therefore |P(H)| = 22

ρ1 · 22ρ2 · . . . · 22ρn = 2

n∑
i=1

2ρi

.

Corollary 1. 1) |P(Kn)| = 2n2
n
; 2) |P(On)| = 2n.

The next section describes the classes of binary mappings that result from set-theoretic opera-
tions on systems.

5. OPERATIONS ON SYSTEMS AND CLASSES OF REALISABLE MAPPINGS

Let there be two systems with structures H1 and H2. The question arises: are there classes of
mappings that, given suitable state functions of the elements, can be realized in both the first and
second systems? If so, how can they be characterized? Let us examine this question.

Let us recall once again that, as described above, each mapping of possible states of a system
with a given structure and fixed functions of the elements is uniquely described by a column-
monomial matrix P . For all possible functions of the elements, a class of mappings is obtained that
are realized by a system with a given structure. Therefore, the description of classes of mappings
is reduced to the description of all possible and admissible monomial matrices.

If some mapping defined by the matrix P , is realized by both the first and the second systems,
then P ∈ P(H1) and P ∈ P(H2), and therefore P ∈ P(H1) ∩ P(H2). The converse is also true: any
matrix P , lying in the intersection of the sets P(H1) and P(H2), determines a mapping realized
by each system.

Statement 3. P(H1 ∩H2) = P(H1) ∩ P(H2) for any H1 and H2.

Proof. Let R1 =
(
r
(1)
ij

)
and R2 =

(
r
(2)
ij

)
be the adjacency matrices of graphs H1 and H2. Then

P(H1) is determined by the system of relations giPq
(−1)
j = 0, (i, j) ∈ IndR	

1 , and P(H2) is deter-

mined by the system of relations giPq
(−1)
j = 0, (i, j) ∈ IndR	

2 . If P ∈ P(H1) ∩ P(H2), then this
means that P must satisfy each of these systems or, in other words, must satisfy the system of

relations giPq
(−1)
j = 0, (i, j) ∈ IndR	

1 ∪ IndR	
2 .

Let us introduce the matrix R	, which is defined as follows: (i, j)-element of this matrix is zero

if the corresponding element of at least one of the matrices R	
1 or R	

2 , is zero, and one when both

elements are one. Then, obviously, IndR	 = IndR	
1 ∪ IndR	

2 . It follows directly from the definition

of the matrix R	 that R	 = R	
1 ∗ R	

2 . Let us now show that R	 is a Kronecker extension along

the rows of the matrix R	 = (R1 ∗R2)
	 = R	

1 ∗R	
2 , i.e., R

	 = R	
1 ∗R	

2 . To do this, it suffices to
prove the relation

R	
1 ∗R	

2 = R	
1 ∗R	

2 . (8)

First of all, note that the first columns of these matrices are equal, since they contain only ones.
Let us show that the remaining elements are also equal. An arbitrary element of the matrix on

the left has the form
(
r
(1)
k1i

r
(2)
k1i

)
· . . . ·

(
r
(1)
kpi

r
(2)
kpi

)
, p = 1, . . . , n, and the corresponding element of the

right matrix is
(
r
(1)
k1i

· . . . · r(1)kpi

)
·
(
r
(2)
k1

· . . . · r(2)kpi

)
. Both expressions differ only in the order of the
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factors, and therefore are equal. Therefore, equality (8) is true. But R = R1 ∗R2 is the adjacency
matrix of the graph H = H1 ∩H2, from which the validity of the statement follows.

Corollary 2. P(H1 ∩ . . . ∩Hk) = P(H1) ∩ . . . ∩ P(Hk) for any H1, . . . ,Hk.

This corollary is proved by induction. Statement 3 establishes a precise connection between
classes of binary mappings and systems at their intersection. A similar relation for the union of
systems is generally incorrect, but the following inclusion holds.

Statement 4. P(H1 ∪H2) ⊇ P(H1) ∪ P(H2) for any H1 and H2.

Proof. Using Statement 3, we have

P(H1 ∪H2) ∩ P(H1) = P ((H1 ∪H2) ∩H1)) = P(H1).

It follows that P(H1) ⊆ P(H1 ∪H2). Similarly, we obtain P(H2) ⊆ P(H1 ∪H2). The validity of
the statement follows from these two inclusions.

The substantive meaning of Statement 4 is that the set of mapping classes realized by a system
with structure H = H1 ∪H2, is greater than the simple union of mapping classes of the systems
being combined. This fact, in a certain sense, reflects the “superadditive effect” inherent in systems,
corresponding to the thesis “the whole is greater than the sum of its parts.” The mapping classes
realized in a system with a graph structure H and not realized in any of the systems being combined
demonstrate the effect of emergence, understood in the narrow sense. This statement can be easily
generalized to any number of systems.

Corollary 3. P(H1 ∪ . . . ∪Hk) ⊇ P(H1) ∪ . . . ∪ P(Hk) for any H1, . . . ,Hk.

From Statement 4 follows the property of monotonicity with respect to inclusion of systems.

Corollary 4. It follows from H1 ⊆ H2 that P(H1) ⊆ P(H2).

Let us characterize in more detail the left and right parts of Statement 4.

Statement 5. The set P(H1 ∪H2) consists of those and only those matrices P ∈ P, that satisfy

the system of relations giPq
(−1)
j = 0, (i, j) ∈ Ind(R1 +R2 −R1 ∗R2)

	.

Proof. Let H = H1 ∪H2. It is obvious that the adjacency matrix R of the structure H is
connected with the adjacency matrices R1 and R2 of the structures H1 and H2 by the equality
R = R1 +R2 −R1 ∗R2. In view of this, the validity of the statement being proved follows from
Statement 1.

Statement 6. The set P(H1) ∪ P(H2) consists of those and only those matrices P ∈ P, that
satisfy the system of relations

giPq
(−1)
j gkPq

(−1)
l = 0, (i, j) ∈ IndR	

1 , (k, l) ∈ IndR	
2 . (9)

Proof. If P ∈ P(H1) or P ∈ P(H2), then P satisfies the system of relations (9). Conversely,

if P does not belong to, for example, P(H1), but satisfies (9), then for some (i, j) ∈ IndR	
1 we have

giPq
(−1)
j �= 0. If we consider the equations of the system of relations (9), in which the indices i

and j coincide with the chosen ones, i.e., giPq
(−1)
j gkPq

(−1)
l = 0, (k, l) ∈ IndR	

2 , then we obtain the

relations gkPq
(−1)
l = 0, (k, l) ∈ IndR	

2 . Consequently, P ∈ P(H2). Similarly, the matrix P , which
does not belong to P(H2) and satisfies (9), belongs to P(H1), which proves the statement.

6. EMERGENCE COEFFICIENT

As shown above, when combining systems, a “superadditive” property appears, which is ex-
pressed in the fact that the new system is capable of realizing mappings that are not realizable by
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any of the original systems. In order to quantitatively characterize this effect, it is necessary to
introduce a suitable scalar indicator that can be interpreted as the degree of irreducibility of the
properties of the system to the properties of its elements.

The simplest and most straightforward approach is to use the ratio |P(H1∪H2)|
|P(H1)∪P(H2)| , which shows

the multiplicity of the excess of the number of implemented mappings when combining systems.
However, despite its simplicity, such an indicator is difficult to interpret. This is due to the fact
that it takes very large values due to the twice exponential growth of the cardinality of the classes
of these mappings, as established in Statement 2. The following considerations suggest a slightly
different approach to constructing such an indicator. Let us consider simple examples.

Let the graph of the structure of a three-element system have n = 3 vertices and ρ1 = ρ2 = 1,
ρ3 = 2 be the indegrees of its vertices. Then, by virtue of Statement 2, the cardinality of the class
of realizable mappings is equal to 22

1+21+22 = 28 = 256. On the other hand, the class of mappings
realizable by a system with a structure K2 with two elements will have exactly this cardinality, i.e.,
22·22 = 28 = 256.

Another similar example. The graph H has n = 6 vertices with indegrees 2, 1, 1, 2, 3, 2. Then
|P(H)| = 22

2+21+21+22+23+22 = 224. But the class of mappings of the same power is realized by
the structure K3, i.e., |P(K3)| = 23·23 = 224 = |P(H)|. In other words, in each of these cases for
some μ the equality 2μ2

μ
= 22

ρ1+2ρ2+...+2ρn is satisfied or

μ2μ = 2ρ1 + 2ρ2 + . . . + 2ρn . (10)

In these examples, μ is the smallest number of vertices of a complete graph with loops that
realizes exactly the same number of mappings as some graph with given indegrees of vertices.
In the cases considered, μ was an integer and could be interpreted as the number of vertices
of a complete directed graph. In the general case, the solution μ of equation (10) for arbitrary
ρ1, ρ2, . . . , ρn will not be an integer. Nevertheless, speculatively reasoning, we can assume that the
solution of equation (10) is a scalar characteristic of the considered class of mappings as a minimal,
but “fuzzy” (not integer) number of vertices of a complete directed graph with loops that realizes
the same number of different mappings. Since the function μ2μ is positive and monotonically
increasing on [0,∞), then for any right-hand side, equation (10) has a unique root.

The quantity μ can be considered as a measure μ = μ [P(H)] of a set P(H) on the Boolean 2P,
where P, as defined above, is the set of all monomial matrices of the corresponding size. This
measure is obviously not additive, but is monotone with respect to inclusion of classes, since
μ [P(H1)] � μ [P(H2)] for P(H1) ⊆ P(H2).

By the emergence coefficient κ (H1,H2) when uniting systems H1 and H2 we will call the quan-

tity κ(H1,H2) = μ[P(H1∪H2)]
μ[P(H1)∪P(H2)]

. From this definition it follows that μ [P(H1 ∪H2)] = μ1 and

μ [P(H1) ∪ P(H2)] = μ2 are the roots of the corresponding equations

μ12
μ1 = log2 |P(H1 ∪H2)| , (11)

μ22
μ2 = log2 |P(H1) ∪ P(H2)| = log2 (|P(H1)|+ |P(H2)| − |P(H1 ∩H2)|) . (12)

The introduced concept of the emergence coefficient can easily be generalized to an arbitrary number
of uniting systems. The following theorem gives two-sided estimates of the introduced coefficient.

Theorem 1. The emergence coefficient κ (H1,H2) for the union of any two n-element systems
H1 and H2 satisfies the inequalities

1 � κ(H1,H2) < 1 +

√
1 +

1

e ln 2
≈ 2.2372.
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The obtained upper bound is quite accurate, which is especially noticeable as n increases. The
table below shows the values of the maximum emergence coefficient for n = 2, . . . , 20 (accurate to
four decimal places). Comparison of the given data with the found upper bound allows us to make
an assumption about its asymptotic accuracy.

Table 1. Values of the maximum emergence coefficient

n Maximum emergence coefficient n Maximum emergence coefficient

11 2.0822

2 1.2553 12 2.1245

3 1.3729 13 2.1567

4 1.4979 14 2.1807

5 1.5981 15 2.1980

6 1.6946 16 2.2102

7 1.7869 17 2.2184

8 1.8803 18 2.2236

9 1.9610 19 2.2265

10 2.0281 20 2.2278

7. CONCLUSION

The paper proposes an apparatus for studying system effects arising in arbitrary binary mapping
systems. Despite the binary nature of the implemented mappings, the standard algebraic technique
is used for the study, which simplifies the description and understanding of emergence effects in
the narrow sense. The analysis allows us to conclude that the classes of mappings observed in
such systems and their transformations during set-theoretical operations on the structures of these
systems are similar to the “expansion effect” when combining classical algebraic structures. The
results obtained, in particular, Statements 3, 4 and their consequences, as well as estimates for
the emergence coefficient given by Theorem 1, allow us to establish in which cases and what
quantitatively the emergent effect can be achieved when aggregating binary systems. This can be
used, for example, to optimize the collective behavior of individual groups of functioning objects
or subjects.

The model of binary mappings considered in the work is a fairly narrow class of mappings.
However, due to its relative simplicity, it allows us to identify some patterns inherent in system
interactions and even characterize them quantitatively. This, in fact, was the motivation for this
work. Generalization of these studies to a more general class of system interactions (even in the
autonomous case) will require the use of a more complex mathematical apparatus associated with
morphisms on differential manifolds and the construction of suitable measures on such objects. This
is the topic of a separate complex study. But such a theory can provide a more natural description
of emergence effects in physical environments and in technical systems.

APPENDIX

Proof of Theorem 1. The left inequality follows immediately from Statement 4 and the mono-
tonicity of the function x2x. Let us prove the right inequality.

Let H1 = (V,E1) and H2 = (V,E2) be arbitrary directed graphs and |V | = n. Consider the
sets of arcs EC = E1 ∩ E2, EA = E1\EC and EB = E2\EC . These sets are obviously pairwise
disjoint. Let us construct three graphs HA = (V,EA), HB = (V,EB) and HC = (V,EC); let
ρAi , ρ

B
i , ρ

C
i , i = 1, . . . , n, denote the indegrees of their vertices, respectively. Then H1 = HA ∪HC =
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(V,EA ∪EC), H2 = HB ∪HC = (V,EB ∪ EC) and by virtue of Statement 2, equations (11)
and (12) can be written as follows:

μ12
μ1 =

n∑
i=1

2
ρA
i

+ρB
i

+ρC
i , μ22

μ2 = log2

⎛⎜⎝2
n∑

i=1

2ρ
A
i

+ρC
i

+ 2

n∑
i=1

2ρ
B
i

+ρC
i

− 2

n∑
i=1

2ρ
C
i

⎞⎟⎠ .

Let ρAi + ρBi + ρCi = mi for some fixed mi � n, i = 1, . . . , n. In this case, the right-hand side in
the first equation is a constant value, and, therefore, due to the monotonicity of the function x2x

the emergence coefficient κ will reach its maximum value at the smallest value of the right-hand
side of the second equation. To find such a value, it is necessary to solve the problem

ϕ = 2

n∑
i=1

2mi−ρA
i

+ 2

n∑
i=1

2mi−ρB
i

− 2

n∑
i=1

2mi−ρA
i

−ρB
i ρA

i
, ρB

i−−−−→ min .

Let us find the stationary points of the function ϕ. Having calculated the partial derivatives
with respect to ρAj , ρBj , j = 1, . . . , n, and equating them to zero, after equivalent transformations
we obtain:

2ρ
B
j · 2

n∑
i=1

2mi−ρA
i

= 2

n∑
i=1

2mi−ρA
i

−ρB
i

, 2ρ
A
j · 2

n∑
i=1

2mi−ρB
i

= 2

n∑
i=1

2mi−ρA
i

−ρB
i

, j = 1, . . . , n. (A.1)

Since the right-hand sides are equal, then 2−ρAj · 2

n∑
i=1

2mi−ρA
i

= 2−ρBj · 2

n∑
i=1

2mi−ρB
i

, j = 1, . . . , n. Let

us denote X =
n∑

i=1
2mi−ρAi , Y =

n∑
i=1

2mi−ρBi and rewrite the expression as:

2mj−ρAj · 2X = 2mj−ρBj · 2Y . (A.2)

Let us sum the last equality over j, and obtain: X2X = Y 2Y . The function x2x strictly mono-
tonically increases at x � 0, therefore the last equation has a unique solution X = Y , and there-
fore, from (14) we obtain that ρAj = ρBj = ρj , j = 1, . . . , n. Let us substitute these conditions into
any of the equations (13), and after taking the logarithm and rearranging the terms we obtain:

ρj +
n∑

i=1

(
2mi−ρi − 2mi−2ρi

)
= 0. At ρi � 0 all terms on the left-hand side are non-negative, there-

fore the last equality is possible only when all these terms are equal to zero, whence it follows that
all ρi = 0. In the admissible region, this is the only stationary point at which an extremum can be
reached. This point lies on the boundary of the region, and the value of the function at it is equal to

ϕ = 2

n∑
i=1

2mi

. However, using the standard technique of studying an extremum using second deriva-
tives, it can be shown that the quadratic form describing the second differential of the function ϕ
at the found point is sign-indefinite, i.e., there is no extremum at this point. This means that the
function ϕ takes an extremal value on the boundary of the region ρAi , ρ

B
i � 0, ρAi + ρBi � mi, i.e.,

under the condition ρAi , ρ
B
i � 0, ρAi + ρBi = mi, i = 1, . . . , n.

To find a stationary point on the boundary, we substitute ρBi = mi − ρAi into the expression

for the function f : f = 2

n∑
i=1

2mi−ρA
i

+ 2

n∑
i=1

2ρ
A
i

− 2n. Having calculated the derivatives with respect
to ρAj and equated them to zero, after transformations we obtain a system of equations for finding
stationary points:

2

n∑
i=1

2mi−ρA
i

· 2mj−ρAj = 2

n∑
i=1

2ρ
A
i

· 2ρ
A
j , j = 1, . . . , n. (A.3)

We sum up all the equations with respect to j and denote X =
n∑

i=1
2mi−ρAi and Y =

n∑
i=1

2ρ
A
i , as a

result we obtain X2X = Y 2Y . This equality is possible only for X = Y . Therefore, from (15) we
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obtain 2mj−ρAj = 2ρ
A
j , whence ρAj =

mj

2 = ρBj , j = 1, . . . , n. Routine research using second deriva-

tives shows that at this point the minimum of the function ϕmin = 2
1+

n∑
i=1

2
mi
2

− 2n is indeed reached.
Thus, to find the greatest value of the emergence coefficient κ under the condition ρAi +ρBi +ρCi = mi

we obtain the equations:

μ12
μ1 =

n∑
i=1

2
mi , (A.4)

μ22
μ2 = log2

⎛⎜⎝2 · 2
n∑

i=1

2
mi
2

− 2n

⎞⎟⎠ . (A.5)

Let us estimate the right-hand side of (17) from below. Since 2

n∑
i=1

2
mi
2

− 2n � 0 for any mi,
i = 1, . . . , n, then

log2

⎛⎜⎝2 · 2
n∑

i=1

2
mi
2

− 2n

⎞⎟⎠ � log22

n∑
i=1

2
mi
2

=
n∑

i=1

2
mi
2 >

(
n∑

i=1

2mi

) 1
2

.

Along with equation (17), we consider equation μ̄22
μ̄2 =

(
n∑

i=1
2mi

) 1
2

. Due to the monotonicity of

the function x2x we conclude that μ̄2 < μ2. Consequently, κ = μ1

μ2
< μ1

μ̄2
= κ̄, so κ̄ can be considered

as an upper bound for κ.

Now we divide equation (16) by (μ̄22
μ̄2)2: μ12μ1

μ̄2
22

2μ̄2
= κ̄

μ̄2
2μ̄2(κ̄−2) = 1. We consider the last equa-

tion as an implicitly defined function κ̄, depending on μ̄2, i.e., F (μ̄2, κ̄) =
κ̄
μ̄2
2μ̄2(κ̄−2) − 1 = 0.

We find the extremum of the implicit function κ̄ of μ̄2. In order for κ̄′̄μ2
= 0, the equality

F ′̄
μ2

= − κ̄
μ̄2
2
2μ̄2(κ̄−2) + κ̄

μ̄2
2μ̄2(κ̄−2)(κ̄− 2) ln 2 = 0 must be satisfied. Solving the equations F ′̄

μ2
= 0

and F = 0, together, we find two solutions to these equations: κ̄1,2 = 1±
√
1 + 1

e ln 2 . Since the

emergence coefficient is obviously a positive value, we finally obtain κ < κ̄ = 1 +
√
1 + 1

e ln 2 ≈
2.2372. Using standard methods, we can show that the found value is the only maximum of the
function under study, which proves the upper bound for κ.

Theorem 1 is proven.
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